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Problem formulation: Efficient Graph Field Integration

Compute efficiently (in the sub-quadratic time in the number of
nodes N of the graph) the following expressions for every node v
of the given graph G

i(v) = Z K(w,v)F(w)
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Compute efficiently (in the sub-quadratic time in the number of
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Graph as a discretization of the 2-dim manifold:

Applications: interpolation on manifolds, topological masking mechanisms for Transformers with structural
inputs, physics simulations in curved spaces, Wasserstein barycenter, (Fused) Gromov Wasserstein, ...




Our contributions: SeparatorFactorization (SF) and RFDiffusion (RFD)

SF

e works with input mesh-graphs

e leverages their low-genus structure (
-> small-size separators)

e applies our new results in structural
graph theory on fast graph field
integration via separator-based
divide-and-conquer methods and
Fast Fourier Transform

e T=O0(Nlog*(N))time complexity for
general K’ T — O(N 10g1.383...(N))
if K := exp(-A*shortest-path distance)
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Experiments

Vertex normal and velocity prediction
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Wasserstein Distances and Barycenters

Total Runtime

e Integrate our GFI methods into the OT Mesh Vi BF RFD Mk
problem of moving masses on a surface
mesh, particularly computation of Alien 5212 8.06  0.39 0.041
Wasserstein barycenters. E:rili( 194876328 ;457'3& ;ig 8'8(1)3
 Geodesic distance on a surface is Octocat 18944  302.84 336  0.027
intractable, so use 2 approximations of
this metric: _
o shortest-path distance (SF) Mesh V| Total Runtime o
o distance coming from an e-NN BF SF
?;{?:‘g')approx'matmg the surface Dice 4468 68 49 0063
Duck 9862 39.2 194 0.002
Land 14738 90.7 38.9 0.015
bubblepot2 18633 113.2 48.3 0.081




(Fused) Gromov Wasserstein distances

Runtime (x102 sec.)

Integrate RFD method in the computation of (Fused)
Gromov Wasserstein discrepancy.
Benchmark it by running extensive speed/accuracy
tests on synthetic 3D distributions.
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Point Cloud Classification

° Compulte the eigendecompositi.on of the Dataset # Graphs # Classes Baseline RFD
approximated RFD kernel matrix.

e Use 16 smallest eigenvalues for ModelNet10  3991/908 10 43.0 70.1
classification on ModelNet10 and Cubes  Cubes 3759/659 23 39.3 44.6

datasets using a random forest.

e Methods like SPH and LFD on ModelNet achieves about 79%.
e Cubes is challenging and PointNet achieves only 55% accuracy.
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