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• What is machine unlearning? 
Machine unlearning involves removing the influence a 
training data instance from a trained model 

• What is exact unlearning? 
Exact unlearning guarantees removal of the data 
instance by re-training model components 
Performed by using a modular machine learning system
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SISA Unlearning

Perform sequential 
training and save 
checkpoints after 
every slice.

In the worst-case, we 
need full re-training

Individual 
modules

All layers 
except the 
topmost one 
are frozen

This layer is 
trained on 
slices (1+2)

The same process continues 
for the remaining layers.
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Efficient unlearning and 
reduces storage cost.
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Multiple deletion can 
necessitate retraining.

Permutation Tree 

Showcasing the 
generation of different 
sequences. A subset of 
diverse sequences is 
highlighted in green.

Sequential Slice-wise Training 

Iterative Cyclic Rotation

Perform cyclic rotation of 
existing sequences to generate 
diverse sequences.

Number of Deletion Requests ( )m = 5, L = 4

Ac
cu

rac
y (

%)

CIFAR-10 CIFAR-100

De
let

ion
 Ra

te

Budget

(a) Plot indicates how performance degrades as more 
deletion requests are processed. (b)  T achieves better 
performance and process more deletion requests 
compared to baselines. 
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Theoretical Guarantees
• Deletion rate of  T:   

• Deletion rate of SISA:   

• Performance gap between  T and SISA: 
 , where   is a positive fraction and 
  (training budget)

S3 O(mL log(mL min(B, L)))

O(mL log(mL))

S3

ζ(1 − ζB′ ) ζ
B′ ∝ B

To achieve the best deletion rate we do 
not need a budget more than   L

• We present a practical way to convert 
ML systems into modular ones 

• We achieve modularity by using: 
PEFT components 
Sequential training for parameter 
isolation 
Using diverse training sequences 
to reduce re-training cost


