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¢ What is exact unlearning?

o Exact unlearning guarantees removal of the data
instance by re-training model components

o Performed by using a modular machine learning system

Exact Unlearning Techniques

SISA Unlearning

Individual
modules

Aggregate
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In the worst-case, we

Retraining Strategy need full re-training

during deletion
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Efficient unlearning and

Lreduces storage cost.

The same process continues
for the remaining layers.
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’ Machine Unlearning ‘ S3T: Sequence-aware Sharded Sliced Training
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e What is machine unlearning? All layers , Sequentia yS ce-wise Ira .
o Machine unlearning involves removing the influence a except the Stage | Stage 2 Stage I
training data instance from a trained model topmost one ¢
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Training Sequence Selection

Permutation Tree

Showcasing the

generation of different
sequences. A subset of
diverse sequences is
highlighted in green.
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Multiple deletion can
necessitate retraining.
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‘ Empirical Results

CIFAR-10

CIFAR-100

99.00
92
98.75
91
98.50
90

—— 53T (Budget=8)
—— S3T (Budget=4)
—— S3T (Full Budget)
—— SISA

—-=- Proto SISA
—— Full Re-training

98.25
89
98.00
88
97.75
87

Accuracy (%)

97.50
86
97.25
85

97.00

20 40 60 80 20 40 60 80

Number of Deletion Requests (m = 5, L = 4)

(a) Plot indicates how performance degrades as more
deletion requests are processed. (b) S°T achieves better
performance and process more deletion requests
Lcompared to baselines.
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Theoretical Guarantees
« Deletion rate of S’T: O(m L log(m L min(B, L)))

To achieve the best deletion rate we do
not need a budget more than L

 Deletion rate of SISA: O(mL log(mL))

* Performance gap between S3T and SISA:
Z(a1 - {B’), where { is a positive fraction and
B’ « B (training budget)
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‘ Conclusion

* We present a practical way to convert
ML systems into modular ones

* We achieve modularity by using:
o PEFT components
o Sequential training for parameter

1,2 every slice. Perform cyclic rotation of isolation
existing sequences to generate ° Using diverse training sequences | ik to Paper!
— diverse sequences. to reduce re-training cost
\ J \_ \_ _J




