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Motivation

Can we analytically derive the perfect erasure function?
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 Input Representations (e.g., text representations) 

 Erased Representations (post erasure, ) 

 Categorical Concept (e.g., gender) 

X :
Z : Z = f(X)
A :
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 Input Representations (e.g., text representations) 

 Erased Representations (post erasure, ) 

 Categorical Concept (e.g., gender) 

X :
Z : Z = f(X)
A :

• Markov Property:  A → X f Z
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 Input Representations (e.g., text representations) 

 Erased Representations (post erasure, ) 

 Categorical Concept (e.g., gender) 

X :
Z : Z = f(X)
A :

• Markov Property:  

• Support sets ( ) are finite 

A → X f Z
𝒳, 𝒵, 𝒜
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 Input Representations (e.g., text representations) 

 Erased Representations (post erasure, ) 

 Categorical Concept (e.g., gender) 

X :
Z : Z = f(X)
A :

• Markov Property:  

• Support sets ( ) are finite 

•  

A → X f Z
𝒳, 𝒵, 𝒜

|𝒳 | > |𝒜 |
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Utility: mutual information 
with original representations

Privacy: mutual information 
with concept variable

 subject to max
f

I(Z; X) I(Z; A) = 0.

 Input Representations (e.g., text representations) 

 Erased Representations (post erasure, ) 

 Categorical Concept (e.g., gender) 

X :
Z : Z = f(X)
A :



 subject to max
f

I(Z; X) I(Z; A) = 0.

Perfect Erasure
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Optimize for f

 Input Representations (e.g., text representations) 

 Erased Representations (post erasure, ) 

 Categorical Concept (e.g., gender) 

X :
Z : Z = f(X)
A :
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H(X)

H(X |A)

I(A; X)

Utility I(Z; X) ↑

Relaxed Concept  
Erasure

Perfect Concept  
Erasure

[Calmon et al., 2017] Principal Inertia Components and its Applications.
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H(X |A)

I(A; X)

Utility I(Z; X) ↑

[Calmon et al., 2017] Principal Inertia Components and its Applications.

• Is it possible to reach this point for any ? 
• What erasure function  achieves this point?

X, A
f
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Utility I(Z; X) ↑

[Calmon et al., 2017] Principal Inertia Components and its Applications.

• Is it possible to reach this point for any ? 
• What erasure function  achieves this point?
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Perfect concept erasure is feasible if and only if : 
(a) Support sizes of concept groups are same,  
(b) Distribution of representations are permutations, 

(i, j)
|𝒳i | = |𝒳j |

P(𝒳i) = σ(P(𝒳j))
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Distributions are permutations of each other, P(𝒳i) = σ(P(𝒳j))
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Main Result: Erasure function
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P1 P2 P3
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P1 P2 P3

Q̂

ΓMEC(P1, Q̂)
ΓMEC(P2, Q̂) ΓMEC(P3, Q̂)

 is the minimum entropy 
coupling (minimizes )
ΓMEC( ⋅ , ⋅ )

H(Pi, Q)
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P1 P2 P3

Q̂ = arg max
Q [H(Q) − ∑

i

p(ai)Hmin(Pi, Q)]

ΓMEC(P1, Q̂)
ΓMEC(P2, Q̂) ΓMEC(P3, Q̂)

 is the minimum entropy 
coupling (minimizes )
ΓMEC( ⋅ , ⋅ )

H(Pi, Q)
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Experimental Setting

• Experiments using synthetic and real-world representations 

• PEF is able to achieve the theoretical guarantees empirically 

• Toxicity classification: Erasure helps improve fairness in text classification using 
GPT-4 representations
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Experimental Results (Synthetic)

Utility - I(Z; X) ↑
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1.59 1.62
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Experimental Results (Real-world)

Utility - MSE(Z, X) ↓
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 MSE(y, ̂y) ↓
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[T1] PEF We derive the fundamental limits and data constraints for perfect erasure 

[T2] PEF achieves perfect erasure under mild assumptions 

[T3] PEF is effective in real-world scenarios outperforming existing techniques
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