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Online Reviews

• There has a massive increase in the number of reviews available online 

• These are a great resource for both sellers and customers
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Opinion Summarization 

Opinion  
Summarizer
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Motivation

• Unsupervised opinion systems are desirable due to the scarcity of labeled data 

• It is crucial to represent text in a way that they capture the underlying semantics 

• One such approach is to have representations as a distribution over latent semantic units 

• Select popular opinions by leveraging such representations 

• We focus on extractive summarization in this work
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Problem Setup

• For an entity (a product — kindle, a hotel — Graduate CH), an opinion set is provided 

• Extract a set of review sentences to form a summary 

• Compare the generated summary with a human-written one
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Distributed Representations
Distributional hypothesis (Firth et al. 1950):  
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A        bottle      of         ______      is         on        the      table.
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Topical Representations

A        bottle      of         water      is         on        the      table.

We want to capture the meaning of text as a distribution over semantic units.

]

Latent concepts or topics

…
blue thirst ocean wood brown glass
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Why not distributed representations?
• It is hard to use off-the-shelf pre-trained distributions for defining similarity measures 

• (Timkey et al, 2021) showed that BERT representations are anisotropic in nature 

• Few dimensions dominate the similarity scores 

• Hard to achieve compositionality using standard operations (add or mul.)
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Why topical representations?
• Representations are distributions over the same support 

• Allows us to compare representations using cosine similarity 

• Retrieve overall semantic distribution using an aggregate (mean) representation
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Recipe for Summarization?
Our approach has 2 components: 

• Unsupervised Representation Learning 

• Converts distributed representations  topical representations 

• Sentence selection algorithm 

• Use topical representations to quantify relevance of a review sentence

→
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Unsupervised Representation Learning
• We use dictionary learning to decompose pre-trained representations into topical 

representations 

• The dictionary captures latent semantic units 

• The sparse coefficients function as the topical representation 

• We use a sentence reconstruction objective for learning the dictionary 

• We design an encoder-decoder architecture to achieve this
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Model Sketch
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Model Architecture

Masked  
Multi-Head Attention
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Take aways
• We train our model using a combination of dictionary and cross-entropy loss 

• We maintain a separate dictionary at each decoder layer 

• We obtain a word representation for each decoder layer 

• How do we combine these to form a sentence representation?
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Word  Sentence Representations→

T1(w) T2(w) T3(w) T4(w) T5(w) T6(w)
[ ]w
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Word  Sentence Representations→

[ ]w1

[ ]w2

[ ]w3

[ ]xs
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Sentence Selection
• We want to select sentences that are representative of popular opinions 

• For an entity , we have sentence representations  

• A naive approach is to select sentence representations close to the mean of  

• Sentence representations lie on a high-dimensional manifold that we need to 
consider while computing distances

e Xe = {xS |s ∈ Se}

Xe
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Sentence Selection

50

Geodesic distance between two representations  and xS xS′ 



Sentence Selection

We name our system Geodesic Summarizer  (GeoSumm)

51



Sentence Selection

Approximates the manifold  
structure using a kNN graph
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Sentence Selection

Computing the distances 
along the manifold
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Sentence Selection

Distances serve as the  
importance of a sentence
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Sentence Selection

Select top  sentences as the 
Output summary

q
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Aspect Summarization
• Users often find aspect-specific summaries useful 

• For example, a hotel entity has different aspects — food, rooms, service etc. 

• Our framework supports this by using an aspect-specific mean representation 

• Aspect sentences are identified using keywords provided in the dataset
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Dataset

• OPOSUM+ (Amplayo et al. 2021) — products reviews (e.g. laptops, bags) from  

• SPACE (Angelidis et al. 2021) — hotel reviews from 

• Amazon reviews (He and McAuley, 2016) — product reviews (e.g. electronics) from 
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Evaluation
We compare the lexical overlap between system and reference summaries 

• ROUGE-1 - refers to overlap of unigrams (words) 

• ROUGE-2 - refers to overlap of bigrams 

• ROUGE-L - considers the longest common subsequence

62



Outline
• Motivation 

• Problem Setup 

• Topical Representations 

• Recipe for Summarization 

• Representation Learning 

• Sentence Selection 

• Datasets and Metrics 

• Results

63



General Summarization - OPOSUM+
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General Summarization - Amazon
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General Summarization - SPACE
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Aspect Summarization - OpoSum+
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Human Evaluation - General Summaries
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Human Evaluation — Aspect Summaries
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Probing Representations

• The gardens are lovely with wide variety of flowering 
plants and shrubs, koi ponds, etc. 

• Pots of tulips and daffodils in full bloom
Cluster Flowers
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Probing Representations

• The gardens are lovely with wide variety of flowering 
plants and shrubs, koi ponds, etc. 

• Pots of tulips and daffodils in full bloom

• Calistoga is a beautiful historic town … 
• The Roman Spa and Calistoga is our favorite spot…
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Probing Representations

• The gardens are lovely with wide variety of flowering 
plants and shrubs, koi ponds, etc. 

• Pots of tulips and daffodils in full bloom

• The rooms were in great shape, very clean, comfortable 
beds with lots of pillows 

• The pillows and bed coverings were of very high quality

• Calistoga is a beautiful historic town … 
• The Roman Spa and Calistoga is our favorite spot…

Cluster

Cluster

Cluster

Flowers

‘Calistoga’

Beds & 
Pillows
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Output Summaries
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Conclusion
• GeoSumm learns topical representations from pre-trained text representations
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Conclusion
• GeoSumm learns topical representations from pre-trained text representations 

• GeoSumm uses them to capture salience using approximate geodesics 

• Topical representations work great, but are there better approaches? 

• Representations capturing varying semantics occupy different high-
dimensional space
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