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Rate Distortion

* Rate-distortion measures the total number of binary bits required to encode
a set of representations Z € R4

| d -
R(Z,e) = 5 log, det (I + EZZ )
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Rate Distortion

* To measure volumnr

e of subgroups (categories of an attribute, e.g. male/

female), we use a

oartition functionIl : Z — {Z,, ..., Z,}

R.(Z,e|Il) = R(Z,,€) + ... + R(Z, €)
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Maximal Coding Rate

* Arepresentation learning objective for classification tasks

* Given representations Z = Z, U ... U Z, from k different classes

* The following objective learns discriminative subspaces for each class

max AR(Z,I1) = R(Z,e) — R.(Z, e | IT)
0
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rairness-aware Incremental Representation Learning (FalRL)
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Debiasing Framework

* First, we describe a framework to perform
debiasing in a static setup
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Debiasing Framework

max AR(Z,18) D00 2

(- )

* First, we describe a framework to perform

debiasing in a static setup ) Y ,
* Input x, representations z, protected 2 OO0 max AR(Z,IT) — BAR(Z',11#)
attribute g, target attribute y .
¢
L
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Incremental Learning

* Feature encoder learns compact representations due to discriminator loss
* Extend the debiasing framework for incremental learning

* We perform an exemplar-based approach — retaining samples from prior stages

* At a stage 1, the discriminator and feature encoder use a modified objective

© FalRL

20



Incremental Learning

* Atstaget,oldZ,,, = ¢(X ;) andnew Z , = ¢(X , ) representations

. Discriminator optimizes the following: max AR(Z’ , 11, .
D

* The feature encoder the following objective;

max AR(Z,

¢ IT,,) — BARZ,,,,. 115,.) — YAR(Z,15 Z 1)) — NAR(Z,,,, 118, )
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Incremental Learning

* Atstaget,oldZ,,, = ¢(X ;) andnew Z , = ¢(X , ) representations

Hg

» Discriminator optimizes the following: max AR(Z', ., 11 ..

D

* The feature encoder the following objective;

mq;a (AR(Z new> new) PARZ new ° new) — YAR(Z old> old) —nAR(Z old> Hgld)

]

Discriminative
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Incremental Learning

* Atstaget,oldZ,,, = ¢(X ;) andnew Z , = ¢(X , ) representations

Hg

» Discriminator optimizes the following: max AR(Z', ., 11 ..

D

* The feature encoder the following objective;

m(/‘;lx AR(Z new> new) —(PAR(Z new ° new) — YAR(Z old> old) —nAR(Z old> Hald)
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Incremental Learning

* Atstaget,oldZ,,, = ¢(X ;) andnew Z , = ¢(X , ) representations

Hg

» Discriminator optimizes the following: max AR(Z', ., 11 ..

D

* The feature encoder the following objective;

méba . AR( news? new) ﬁ AR(Z new * new }/AR( old’ OZd) — N AR(ZOld’ Hald)

7

Retain subspaces for X, ;

© FalRL

24



Incremental Learning

* Atstaget,oldZ,,, = ¢(X ;) andnew Z , = ¢(X , ) representations

Hg

» Discriminator optimizes the following: max AR(Z', ., 11 ..

D

* The feature encoder the following objective;

mC’;aX AR( new? new) ﬁAR(ZneW’ new) o }/AR( old> Old) o HAR(ZOZCZ’ Old)

;i

Protect leakage for X,
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Exemplar Sampling

After each stage, we retain a small sample of instances using the following:

* Random sampling — randomly select r samples
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Exemplar Sampling

After each stage, we retain a small sample of instances using the following:

* Random sampling — randomly select r samples
* Prototype sampling — select instances with high similarity with top eigenvectors

* Submodular optimization — select instances best representative of a set wirt. a
submodular function
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Datasets

* Biased MNIST: We modify MNIST dataset to have backgrour

variable) correlate with digit information (target variable) witk
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Datasets

* Biased MNIST: We modify MNIST dataset to have background color (protected
variable) correlate with digit information (target variable) with probability (p)

* Biographies contains biographies of people with a profession (target variable) and
gender label (protected variable)
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Biased MNIST

p = 0.85 p=0.9

Accuracy (%)
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Biographies
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Visualization

® Motivation

UMAP projections of representations in Biographies dataset

(a) Before training (b) Post training using FalRL
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Conclusion
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Conclusion

We tackle the task of learning fair representations in an incremental learning setup

We propose FalRL, that makes fair decisions while learning new tasks by
controlling the rate-distortion function of representations

Empirical evaluation show that FalRL outperforms existing methods

FalRL is a first step towards achieving fairness in the wild
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