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Fair outcomes
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• Rate-distortion measures the total number of binary bits required to encode 
a set of representations Z ∈ ℝd

R(Z, ϵ) =
1
2

log2 det (I +
d

nϵ2
ZZT)
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Rate Distortion
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• To measure volume of subgroups (categories of an attribute, e.g. male/
female), we use a partition function Π : Z → {Z1, …, Zk}

Rc(Z, ϵ |Π) = R(Z1, ϵ) + … + R(Zk, ϵ)
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Maximal Coding Rate
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• A representation learning objective for classification tasks 

• Given representations  from  different classes 

• The following objective learns discriminative subspaces for each class

Z = Z1 ∪ … ∪ Zk k

max
θ

ΔR(Z, Π) = R(Z, ϵ) − Rc(Z, ϵ |Π)
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Fairness-aware Incremental Representation Learning (FaIRL)
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• First, we describe a framework to perform 
debiasing in a static setup
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• First, we describe a framework to perform 
debiasing in a static setup 

• Input , representations , protected 
attribute , target attribute  

x z
g y
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• First, we describe a framework to perform 
debiasing in a static setup 

• Input , representations , protected 
attribute , target attribute  
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Incremental Learning
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• Feature encoder learns compact representations due to discriminator loss
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Incremental Learning
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• Feature encoder learns compact representations due to discriminator loss 

• Extend the debiasing framework for incremental learning
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Incremental Learning

19

• Feature encoder learns compact representations due to discriminator loss 

• Extend the debiasing framework for incremental learning 

• We perform an exemplar-based approach — retaining samples from prior stages
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Incremental Learning
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• Feature encoder learns compact representations due to discriminator loss 

• Extend the debiasing framework for incremental learning 

• We perform an exemplar-based approach — retaining samples from prior stages 

• At a stage , the discriminator and feature encoder use a modified objectivet
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Incremental Learning

21

• At stage , old  and new  representations 

• Discriminator optimizes the following:  

• The feature encoder the following objective:

t Zold = ϕ(Xold) Znew = ϕ(Xnew)

max
D

ΔR(Z′ new , Πg
new)

max
ϕ

ΔR(Znew, Πy
new) − βΔR(Z′ new , Πg

new) − γΔR(Zold, Z̄old) − ηΔR(Zold, Πg
old)
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• At stage , old  and new  representations 

• Discriminator optimizes the following:  

• The feature encoder the following objective:

t Zold = ϕ(Xold) Znew = ϕ(Xnew)

max
D

ΔR(Z′ new , Πg
new)

max
ϕ

ΔR(Znew, Πy
new) − βΔR(Z′ new , Πg

new) − γΔR(Zold, Z̄old) − ηΔR(Zold, Πg
old)

Discriminative  
representations for Xnew
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• At stage , old  and new  representations 

• Discriminator optimizes the following:  

• The feature encoder the following objective:

t Zold = ϕ(Xold) Znew = ϕ(Xnew)

max
D

ΔR(Z′ new , Πg
new)

max
ϕ

ΔR(Znew, Πy
new) − βΔR(Z′ new , Πg

new) − γΔR(Zold, Z̄old) − ηΔR(Zold, Πg
old)

Protect leakage for Xnew
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Incremental Learning
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• At stage , old  and new  representations 

• Discriminator optimizes the following:  

• The feature encoder the following objective:

t Zold = ϕ(Xold) Znew = ϕ(Xnew)

max
D

ΔR(Z′ new , Πg
new)

max
ϕ

ΔR(Znew, Πy
new) − βΔR(Z′ new , Πg

new) − γΔR(Zold, Z̄old) − ηΔR(Zold, Πg
old)

Retain subspaces for Xold
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Incremental Learning
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• At stage , old  and new  representations 

• Discriminator optimizes the following:  

• The feature encoder the following objective:

t Zold = ϕ(Xold) Znew = ϕ(Xnew)

max
D

ΔR(Z′ new , Πg
new)

max
ϕ

ΔR(Znew, Πy
new) − βΔR(Z′ new , Πg

new) − γΔR(Zold, Z̄old) − ηΔR(Zold, Πg
old)

Protect leakage for Xold
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Exemplar Sampling
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After each stage, we retain a small sample of instances using the following: 

• Random sampling — randomly select  samplesr
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Exemplar Sampling
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After each stage, we retain a small sample of instances using the following: 

• Random sampling — randomly select  samples 

• Prototype sampling — select instances with high similarity with top eigenvectors

r
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Exemplar Sampling
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After each stage, we retain a small sample of instances using the following: 

• Random sampling — randomly select  samples 

• Prototype sampling — select instances with high similarity with top eigenvectors 

• Submodular optimization — select instances best representative of a set w.r.t. a 
submodular function

r
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Datasets
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• Biased MNIST: We modify MNIST dataset to have background color (protected 
variable) correlate with digit information (target variable) with probability (p)
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Datasets
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• Biased MNIST: We modify MNIST dataset to have background color (protected 
variable) correlate with digit information (target variable) with probability  

• Biographies contains biographies of people with a profession (target variable) and 
gender label (protected variable)

(p)
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Biased MNIST
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Biographies
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Visualization

34

(a) Before training               (b) Post training using FaIRL 

UMAP projections of representations in Biographies dataset
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• We tackle the task of learning fair representations in an incremental learning setup
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• We tackle the task of learning fair representations in an incremental learning setup 

• We propose FaIRL, that makes fair decisions while learning new tasks by 
controlling the rate-distortion function of representations
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• We tackle the task of learning fair representations in an incremental learning setup 

• We propose FaIRL, that makes fair decisions while learning new tasks by 
controlling the rate-distortion function of representations 

• Empirical evaluation show that FaIRL outperforms existing methods
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• We tackle the task of learning fair representations in an incremental learning setup 

• We propose FaIRL, that makes fair decisions while learning new tasks by 
controlling the rate-distortion function of representations 

• Empirical evaluation show that FaIRL outperforms existing methods 

• FaIRL is a first step towards achieving fairness in the wild
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