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Motivation
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There's software used across the country to
predict future criminals. And it's biased
against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren
Kirchner, ProPublica

May 23, 2016

ML systems often produce unfair decisions

against certain groups

We study the challenging problem of
achieving fairness in online settings



Group Fairness

Group Fairness technigques focus on enhancing the fairness of ML
algorithms by ensuring that different groups receive equal treatment.



Batch-wise Group Fairness

* In batch-wise settings, a learning function f can be optimized as shown:

min L(f(x),y), subject to |E[f(x|a =0)] — E[f(x|]la=1)]| <e€.
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a IS the sensitive attribute
(e.g., gender)




Batch-wise Group Fairness

* In batch-wise settings, a learning function f can be optimized as shown:

min L(f(x),y), subject to |EJ flx|a = 0)] -

f “[firla= DI <e.

Difference between predictions of two groups



Online Setting

* In online setup, input points x;, x,, ..

. arrive one at atime




Online Setting

fx;la=0)+ ... +f(x,|a=0)
1 - ~E[fix|]a=D]| <e.
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Challenge: Fairness gradient computation
requires storage and multiple passes of f s A
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Overview of Aranyani

Online Learning Prediction Using Oblique | | Gradient Estimation Using
For Group Fairness Decision Forests Aggregate Statistics
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Aranyani




Aranyani
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10



Aranyani
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Fairness Gradient Estimation

* The fairness gradient estimation process is shown below:

G(0) = VoL(f(x).y) + 4 ) VoHy(F})

l,] i

Differentiable Huber loss for
node-level decisions
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Theoretical Results

* Estimation error of fairness gradients is bounded: 0B/2

DR

* The gradient norm @ is bounded by wber constant, B: input bound
i

Pr < (e+ 20 4B
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h: tree height, A: loss hyperparamater
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Experiments

* Experiments show effectiveness in Tabular, Vision, and Language datasets

* During online learning, at each step we measure the task performance and fairness

* We report the average performances at the final step, 1°

14



Tabular Datasets
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Vision & Language Datasets
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Summary

We propose to achieve group

fairness in online environments

leverages obligue decision forests
for efficient online gradient computation

achieves impressive performance in
real-world scenarios
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Thank Youl!

Contact Info:

Somnath Basu Roy Chowdhury

UNC Chapel Hill
somnath@cs.unc.edu
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